2025-03-28

🔬 At a molar fraction of 5% vinyl acetate, the mechanical properties of EVA (ethylene vinyl acetate copolymers) become very similar to those of soft PVC.EVA is flexible in its own right, which gives it a number of advantages, such as the disadvantage of avoiding the migration of plasticizers, which is the main reason for the gradual replacement of PVC.

 

 

💪 These copolymers have a higher modulus and better processing properties than typical elastomers and do not require vulcanization considerations. Polyvinyl alcohol can be obtained by hydrolysis of polyvinyl acetate. Poly(vinyl alcohol) is an atactic cubic polymer but does not disrupt the lattice structure due to the small hydroxyl groups. Therefore, ester bases that are not sufficiently hydrolyzed reduce crystallinity and the number of intermolecular hydrogen bonds.

 

💧 Highly hydrolyzed poly(vinyl acetate) (containing fewer unhydrolyzed ester groups) has a higher crystallinity. As the degree of hydrolysis increases, the molecules become easily crystallized. If these molecules are not sufficiently dispersed before dissolution, hydrogen bonding will cause them to associate with each other. In order to achieve hydrolysis levels above 98%, manufacturers need to operate at a low temperature of 96°C to ensure that the larger molecules have sufficient thermal energy to dissolve.

 

Website: www.elephchem.com

Whatsapp: (+)86 13851435272

E-mail: admin@elephchem.com

 

READ MORE
2025-03-28

EVOH (ethylene vinyl acetate copolymer) is a polymer with excellent gas barrier properties and is commonly used in food packaging, medical products, and protective materials for automotive and electronic products. Due to the high molar fraction of vinyl acetate, EVOH exhibits excellent gas barrier properties, especially for oxygen and nitrogen, and is therefore often used in food packaging to extend the shelf life of products.

 

Ethylene-VinylAlcohol Copolymer(EVOH)

 

The gas barrier properties of EVOH stem from its highly crystalline structure, which allows the molecular chains to be arranged more tightly, reducing the path of gas molecules through the material. In order to improve the properties of EVOH, different degrees of hydrolysis are often used to adjust the degree of crystallinity. The higher the degree of hydrolysis, the higher the crystallinity of EVOH and the consequent increase in barrier properties. Therefore, the degree of hydrolysis of EVOH must be strictly controlled during the production process to ensure that the material has ideal gas barrier properties. In China, EVOH products (EW-3201 and EW-3801) produced by Sinopec are highly recognized.

 

 

EVOH also offers significant advantages over other plastics in terms of chemical resistance, high temperature resistance and transparency. Its excellent processability allows it to be used directly in multilayer composites without the need for complex post-treatment operations during production, thus enhancing the functionality and economy of the final product.

 

Website: www.elephchem.com

Whatsapp: (+)86 13851435272

E-mail: admin@elephchem.com

 

 

READ MORE
2025-03-28

PVB resin, a versatile and highly adaptable material, has found its way into a myriad of applications across various industries. Its unique properties, such as transparency, durability, and adhesion, make it an indispensable component in modern manufacturing and technology.

 

PVB resin is widely used as an interlayer material in the production of safety glass. This type of glass boasts exceptional transparency and high impact resistance, making it ideal for applications in the aerospace and automotive sectors. Whether it’s for airplane windows or car windshields, PVB resin-based safety glass ensures both clarity and durability, providing an extra layer of protection in high-stakes environments.

 

In the realm of protective coatings, PVB resin plays a crucial role in manufacturing anti-corrosion and anti-rust paints. These coatings are known for their strong adhesion, excellent water resistance, and ability to withstand harsh weather conditions. Additionally, PVB resin is used to create metal primers and cold-resistant paints, ensuring that structures and machinery remain intact and functional even in extreme environments.

 

PVB resin is a key ingredient in the production of vibrant decorative films, which can serve as an alternative to traditional ceramic decals. These films are not only visually appealing but also highly durable. In the PVB resin industry, it is also used to create molding compounds that can replace metals like steel and lead. Furthermore, PVB resin-based adhesives are widely employed for bonding materials such as wood, ceramics, metals, plastics, leather, and laminated composites, showcasing its versatility.

 

The textile industry benefits from PVB resin in the form of fabric treatment agents and yarn tubes, which enhance the quality and durability of textiles. In the food industry, PVB resin is used to produce non-toxic packaging materials, ensuring the safety and integrity of food products. Its non-toxic nature makes it an ideal choice for packaging sensitive items like tea and cigarettes, where odor retention is a concern.

 

In the paper industry, PVB resin is utilized as a paper treatment agent, improving the strength and quality of paper products. Additionally, it is used to create anti-shrinkage agents, stiffening agents, and other waterproof materials, further expanding its utility in industrial applications.

 

PVB resin’s solubility in alcohols and non-toxic nature make it a preferred choice in the printing industry. It is compatible with various printing techniques, including flexography, gravure, letterpress, screen printing, and heat transfer printing. Its ability to produce odor-free prints makes it suitable for packaging sensitive items like tea and cigarettes. Moreover, its cationic properties allow it to adhere strongly to glass surfaces, making it particularly effective for glass decoration through screen printing.

 

From enhancing the safety of vehicles and aircraft to revolutionizing the printing and packaging industries, PVB resin has proven to be a material of immense value. Its adaptability, combined with its eco-friendly and non-toxic characteristics, ensures that it will continue to play a pivotal role in shaping the future of technology and industry. As research and innovation progress, we can only expect to see even more groundbreaking applications of this remarkable material.

 

Website: www.elephchem.com

Whatsapp: (+)86 13851435272

E-mail: admin@elephchem.com

READ MORE
2025-03-28

In recent years, with the accelerated pace of urbanization in my country and the continuous growth of automobile sales, there has been a strong demand for PVB laminated glass. At the same time, with the development of technology, PVB Film has been researched and developed, and the application market has been further developed. In this development process, we must not only pay attention to new technological innovation, but also overcome the technical difficulties in the process of PVB waste collection and recycling, so as to achieve the environmental friendliness and maximize the economic benefits of the PVB industry. At present, the recycling of PVB resin mainly includes physical recycling method, chemical recycling method and energy recovery method.

 

Physical recycling is to put the discarded PVB through a series of physical treatment processes, such as separation, purification, cleaning, etc., and at the same time, add certain additives as required for reuse. This method can effectively utilize PVB materials and greatly reduce environmental pollution. For example, the PVB solid waste and scraps discarded in the market are recycled, and after sorting, cleaning, drying, and crushing processes, plasticizers, tougheners, three-salt stabilizers and other additives are added, and waterproof membranes for construction are produced through high-speed mixing, mastication, tableting and other processes. Through experimental research, it has been found that the waterproof membrane has good mechanical properties, convenient processing, and a wide operating temperature range, and has broad market prospects in the construction field.

 

The chemical recycling method uses light, heat, radiation, and chemical reagents to degrade PVB polymer into low-molecular single or hydrocarbon substances. At the same time, the cracked raw materials can be reused. Common cracking methods include hydrolysis, alcoholysis, thermal cracking, hydrocracking, catalytic cracking, etc. However, the current technology of this deep chemical recovery method is not very mature, the technology cost is high, and the economic benefits are low. Currently, the most commonly used method is to process waste PVB to obtain pure polymer resins and additives. Supercritical separation technology is used to separate the additives and resin in colorless PVB.

 

Energy recovery is the process of extracting energy from waste plastic, typically used as fuel or to generate steam to generate electricity. Because PVB polymer contains a large amount of hydrocarbons, it is flammable. Although the energy recovery method is one of the methods for recycling PVB waste, it is not commonly used due to its high cost.

 

Website: www.elephchem.com

Whatsapp: (+)86 13851435272

E-mail: admin@elephchem.com

READ MORE
2025-03-28

Aluminum nitride (AlN) is a high-performance material with high thermal conductivity (320 W·m⁻¹·K⁻¹), excellent electrical insulation (>10¹⁴ Ω·cm), and strong mechanical properties. Its low dielectric constant (8.0 at 1 MHz) and minimal dielectric loss (tanδ = 10⁻⁴) make it ideal for electronics.

 

AlN powder

 

Key applications include:

Power device packaging

High thermal conductivity AlN ceramic substrates

Electrostatic chucks' material for semiconductor processing

Excellent insulation ceramic components ( ceramic heaters,ceramic nozzles)

AlN combines thermal management, electrical resistance, and durability for advanced industrial use.

 

High thermal conductivity AlN ceramic substrates

 

AlN ceramics are sintered from AlN powder, and high-quality AlN powder is a prerequisite for achieving high-performance AlN ceramics. The preparation of AlN powder significantly impacts the sintering, forming, and thermal conductivity of the final product. Industrially, there are three main methods for producing AlN powder: direct nitridation, self-propagating high-temperature synthesis (SHS), and carbothermal reduction.

 

Ceramic nozzle

 

1. Principle of the Carbothermal Reduction Method

The carbothermal reduction method typically uses aluminum compounds (such as alumina or aluminum hydroxide) and excess elemental carbon or organic carbon as raw materials. These are reacted in a nitrogen (N₂) or ammonia (NH₃) atmosphere at high temperatures. The product is then decarburized in an oxidizing atmosphere at 500–700°C to obtain AlN powder. This method yields powder with low oxygen content, high purity, narrow particle size distribution, and regular particle morphology.

The reaction mechanism can be summarized as follows:

 

reaction principle

 

①Reduction of alumina: Carbon reduces alumina to form intermediate products such as Al(g) and Al₂O(g).

②Nitridation: Aluminum reacts with nitrogen to form AlN.

 

aluminum nitride (ALN) ceramic

 

The reaction mechanism of carbothermal reduction can be categorized into gas-solid and solid-solid reactions. Experimental observations of aluminum vapor emission peaks support the formation of gaseous aluminum intermediates under specific conditions. The gas-solid reaction explains mass loss during the process and the mass transfer involved in whisker growth. Meanwhile, the solid-solid reaction mechanism accounts for the morphological continuity between the product and precursor, as well as the formation of intermediate compounds such as Al-O-C and Al-C-N during the conversion of Al₂O₃. This mechanism is more widely accepted.

 

AlN Powder Manufacturing Process Flow

 

The AlN powder manufacturing process mainly includes ball milling and mixing, nitridation synthesis, low-temperature decarburization, and AlN crushing/recovery.

 

2. Process Characteristics of Carbothermal Reduction

The carbothermal reduction method offers advantages such as abundant raw materials, simple processing, and suitability for large-scale production. The synthesized powder exhibits high sphericity, purity, fine particle size, narrow size distribution, and good dispersibility, making it the primary industrial method for AlN powder production. Compared to direct nitridation and SHS, carbothermal reduction yields better sphericity and higher purity AlN powder .

 

High purity AlN powder

 

About Xiamen Juci Technology Co., Ltd.

Xiamen Juci Technology Co., Ltd. is a high-tech enterprise specializing in the research, development, production, and sales of high-performance ceramic materials. The company is committed to providing high-quality aluminum nitride series products and solutions for industries such as electronics, semiconductors, and aerospace, earning widespread trust from customers with its exceptional quality and service.

 

Media Contact:
Xiamen Juci Technology Co., Ltd.

Phone: +86 592 7080230
Email: miki_huang@chinajuci.com
Website: www.jucialnglobal.com

 

READ MORE
2025-03-21

Almost anything that you want to make it glow.

You can mix it into a transparent or semi-transparent medium such as resin, wax, paint, ink, paste, plastics, rubber, fabric, caulking, ceramic glaze, nail-polish etc.

There are industrial applications for safety, for novelty, for fun, for household using in arts and crafts. sinosunman Glow in the dark pigment can meet expectation of all purposes above-mentioned. Some detailed applications, such as egress signs, sudden darkness orientate system, outline marking, cell phone case, keyboard cover pad, screen-printing ink, night-glow shirts, toys, clothes, glass mosaic, garden decoration lights, etc., have been applied.

See some application samples in picture below:

a.

b.

 

READ MORE
2025-03-12

When it comes to advanced materials, N-Phenylmaleimide (N-PMI) stands out as a key additive for enhancing heat resistance and thermal stability in various polymer applications. As a trusted manufacturer and global supplier, Yangchen Tech delivers high-purity N-Phenylmaleimide (up to 99.7%) .

 

N-Phenylmaleimide

 

Why Choose Yangchen Tech’s N-Phenylmaleimide?

 

✔ Exceptional Heat Resistance – Enhances ABS, PVC, and other engineering plastics, significantly improving HDT (Heat Distortion Temperature).

✔ High Purity (99.7%) – Ensures optimal efficiency in modifying polymers and coatings.

✔ Versatile Applications – Widely used in high-performance plastics, coatings, adhesives, and synthetic rubber.

✔ Reliable Global Supplier – With years of expertise in specialty chemicals and polymer additives, Yangchen Tech guarantees consistent quality and supply stability.

 

Basic Information

 

 

Chemical Structure N-phenylmaleimide
Chemical Formula C10H7NO2
CAS No. 941-69-5
Molecular Weight 173.16
Packing Type Paper bag (20 kg)
Properties Yellow crystalline powder or needles

 

 

Applications of N-Phenylmaleimide manufactured by Yangchen Tech

 

🔹 ABS & PVC Heat-Resistant Modification – Improves thermal stability and extends service life.

🔹 Paints & Coatings – Enhances heat and chemical resistance for long-lasting finishes.

🔹 Adhesives & Composites – Ensures stronger bonding performance under high temperatures.

🔹 Pharmaceutical & Agrochemical Intermediates – Used in specialty chemical synthesis.

 

Looking for a Reliable N-Phenylmaleimide Supplier? Let’s Connect!

At Yangchen Tech, we focus on quality, innovation, and customer satisfaction. Whether you need customized specifications, bulk supply, or technical support, we are here to meet your needs.

 

💬 Interested in our N-Phenylmaleimide? Contact us today for a quote, free sample, or technical consultation! Let’s explore how our advanced materials can enhance your applications.

 

📩 Get in Touch Now! READ MORE

2025-03-12

N-Phenylmaleimide 99.7% Purity, manufactured by Yangchen Tech, is a high-performance monomer widely used to enhance the heat resistance and mechanical properties of ABS and PVC resins. With its superior 99.7% purity, this compound offers unmatched consistency, performance, and reliability in a range of industrial applications.

 

N-Phenylmaleimide 99.7% Purity

 

Specification

 

N-phenylmaleimide 941-69-5
Test Specification
Apperance Light yellow to Yellow powder to lump
Purity min. 99.0 % 
Melting Point 85.0 to 90.0 °C 
Solubility in Methanol 

Practically transparent

Water Content wt%

0.1 max.

 

Why Choose N-Phenylmaleimide 99.7% Purity?

The high purity of N-Phenylmaleimide 99.7% Purity is crucial for achieving optimal results in resin modification, especially in materials like ABS (Acrylonitrile Butadiene Styrene) and PVC (Polyvinyl Chloride). When added to these resins, NPMI helps to significantly increase heat resistance, improve processing capabilities, and enhance mechanical strength—all critical properties for durable and high-performance products.

 

Applications of N-Phenylmaleimide in ABS and PVC Resins:

  1. Enhanced Heat Resistance: When incorporated into ABS and PVC resins, N-phenylmaleimide raises the heat distortion temperature (HDT) of the material, making it more resistant to high-temperature environments. This is especially beneficial for products in industries such as automotive, electronics, and construction, where heat exposure is common.

  2. Improved Mechanical Properties: N-phenylmaleimide strengthens the tensile strength and hardness of ABS and PVC resins, resulting in more durable and wear-resistant materials. This modification is crucial for creating products that withstand mechanical stress, such as automotive parts, electrical components, and piping systems.

  3. Better Processability: By enhancing the flow properties of ABS and PVC resins, N-Phenylmaleimide 99.7% Purity improves their moldability and extrudability, making them easier to process into complex shapes and designs.

  4. Cost-Effective Performance: With Yangchen Tech's N-phenylmaleimide, manufacturers can achieve superior resin modification without significantly increasing production costs. The 99.7% purity ensures high efficiency in small quantities, making it a cost-effective solution for large-scale production.

 

Why Choose Yangchen Tech for N-Phenylmaleimide 99.7% Purity?

As a supplier of high-quality N-phenylmaleimide, Yangchen Tech offers consistent product quality and excellent customer support of N-Phenylmaleimide 99.7% Purity. Our N-phenylmaleimide is sourced from advanced manufacturing processes and undergoes rigorous quality control, ensuring that every batch delivers the 99.7% purity that our clients rely on.

With extensive experience in providing custom solutions and technical support, Yangchen Tech is committed to helping you enhance the performance of ABS and PVC resins, making them more heat-resistant, durable, and versatile for a wide range of applications.

READ MORE
2025-03-12

Styrene Maleic Anhydride Copolymer (SMA Copolymer) manufactured by Yangchen Tech is a highly versatile and widely used thermoplastic copolymer that combines the benefits of styrene and maleic anhydride. SMA is produced by copolymerizing styrene with maleic anhydride, resulting in a polymer that exhibits excellent chemical resistance, high thermal stability, and superior adhesion properties. Due to its unique properties, SMA has become an essential component in various industrial applications, particularly in plastics manufacturing.

Styrene Maleic Anhydride Copolymer produced by Yangchen Tech  can help your products with strong bonding, high impact resistance, and enhanced durability,which can improve the performance of materials, especially in the plastic industry, makes it a go-to solution for manufacturers seeking to elevate the functionality of their products.

 

 

Basic Information

 

Test Item Test Standards Test Data
Molecular weight and distribution GPC Mw=12~16*104.PDI=2.0~3.0
Glass transition temperature/℃ DSC 160~210℃(Adjustable)
Initial decomposition temperature/℃ TGA 395-405℃
Density  ASTM-D792 1.00~1.15g/cm3
Appearance NG Off-white powder

 

 

Applications of Styrene Maleic Anhydride Copolymer in Plastics Manufacturing

1. Enhancing Impact Resistance in Plastics

SMA Copolymer plays a critical role in enhancing the impact resistance of plastic products. It is often used as a modifier in the production of engineering plastics, such as ABS (Acrylonitrile Butadiene Styrene) and polystyrene. When added to these materials, SMA copolymer significantly improves their strength and durability without compromising flexibility. This makes it an essential ingredient in producing products that need to withstand stress, impact, and high temperatures.

 

2. Adhesive and Coating Applications

The high reactivity of SMA makes it an excellent choice for adhesives and coatings. By combining SMA with other resins or polymers, manufacturers can create strong, durable bonding agents. This is particularly useful in industries where adhesive strength and resistance to environmental factors are critical. Whether it's in automotive applications, electronics, or packaging, SMA-based adhesives provide a reliable solution for manufacturers.

 

3. Plastic Alloying and Blending

SMA is widely used to enhance the properties of plastic alloys. It acts as a compatibilizer, helping to blend otherwise incompatible polymers. In plastics, SMA improves the overall processing capabilities and enhances mechanical properties, especially when combined with high-performance polymers like polycarbonate (PC), polyphenylene oxide (PPO), or polyphenylene sulfide (PPS). By creating a more homogenous blend, SMA improves the structural integrity of plastic parts used in demanding environments.

 

 

 

4. Applications in Automotive Plastics

The automotive industry relies heavily on advanced materials that offer durability, strength, and resistance to heat and wear. SMA Copolymer is often used in automotive applications such as interior trim, bumpers, and other plastic components. Its ability to improve impact resistance, along with its excellent thermal stability, makes it an ideal choice for manufacturing durable automotive parts that can withstand extreme conditions.

 

5. Medical Plastics and Devices

Styrene Maleic Anhydride Copolymer ’s high purity and biocompatibility make it suitable for use in medical devices and equipment. Its excellent chemical resistance ensures that medical plastics maintain their integrity when exposed to harsh cleaning agents or sterilization processes. Additionally, its strong bonding ability makes it ideal for creating medical products that require long-lasting durability.

 

Why Choose Styrene Maleic Anhydride Copolymer for Your Plastic Manufacturing Needs?

Enhanced Performance: SMA Copolymer boosts the performance of plastics by improving impact resistance, adhesion strength, and thermal stability.

Customization: It can be tailored for specific applications, offering flexibility in plastic product development.

Cost-Effectiveness: By improving material properties and enabling better processing techniques, SMA helps reduce manufacturing costs in the long run.

Sustainability:Styrene Maleic Anhydride Copolymer  efficient bonding properties can lead to lighter and more durable plastic products, supporting sustainable manufacturing practices by reducing waste and material usage. Any questions,feel free to contact:business@xysjgm.com

  • WAREHOUSE OF YANGCHEN TECH
    OUR WAREHOUSE
    Whatever you needs, YANGCHEN TECH is at your side.
  • WAREHOUSE OF YANGCHEN TECH
    OUR WAREHOUSE
    Whatever you needs, YANGCHEN TECH is at your side.
  • WAREHOUSE OF YANGCHEN TECH
    OUR WAREHOUSE
    Whatever you needs, YANGCHEN TECH is at your side.

 

 

 

READ MORE
2025-03-12

Introduction

Styrene Maleic Anhydride Copolymer (SMA) is a high-performance copolymer formed by the polymerization of styrene and maleic anhydride. With its unique combination of properties, SMA is widely used in the modification and enhancement of various plastics, improving their performance in critical applications. Whether you're in automotive, electronics, packaging, or construction, SMA plays an essential role in delivering durable, heat-resistant, and high-strength plastic materials.

At Yangchen Tech, we specialize in manufacturing high-quality Styrene Maleic Anhydride Copolymer that meets the specific needs of various industries. Let’s dive into the advantages and applications of SMA in plastics.

 

Styrene Maleic Anhydride Copolymer

 


What Makes Styrene Maleic Anhydride Copolymer Special?

SMA is well-known for its exceptional characteristics, which make it an ideal additive for modifying plastics, especially engineering resins. The key benefits of using SMA in plastics include:

  1. Improved Heat Resistance:
    SMA increases the heat distortion temperature (HDT) of plastics, allowing them to withstand higher operational temperatures without degrading. This is particularly important in industries like automotive and electronics, where materials need to perform under intense heat.

  2. Enhanced Adhesion:
    SMA has excellent adhesion properties, which makes it ideal for coatings and adhesives, enhancing bonding strength and durability.

  3. Increased Mechanical Properties:
    The incorporation of SMA can improve the tensile strength, impact resistance, and hardness of plastics. These enhancements make the materials more suitable for high-performance applications.

  4. Chemical Resistance:
    SMA improves the chemical resistance of plastics, making them more resistant to degradation from exposure to chemicals and solvents.

  5. Compatibility with Other Polymers:
    SMA is highly compatible with a variety of polymers, including ABS, PVC, polyolefins, and polyamides. It helps improve the overall properties of polymer blends, resulting in materials that are more durable and reliable.


Basic Information

 

Test Item Test Standards Test Data
Molecular weight and distribution GPC Mw=12~16*104.PDI=2.0~3.0
Glass transition temperature/℃ DSC 160~210℃(Adjustable)
Initial decomposition temperature/℃ TGA 395-405℃
Density  ASTM-D792 1.00~1.15g/cm3
Appearance NG Off-white powder

 

 

Applications of Styrene Maleic Anhydride Copolymer in Plastics

  1. Automotive Industry:
    In the automotive sector, SMA is used to enhance the properties of plastic components that are exposed to high temperatures, such as interior parts, under-the-hood components, and exterior trim. Its heat resistance, mechanical strength, and compatibility with other materials make it an ideal modifier for automotive applications.

  2. Electronics and Electrical Applications:
    SMA is widely used in the manufacturing of high-performance plastic housings, connectors, and insulators for electronic and electrical devices. It increases the material's ability to endure high temperatures and resist electrical stresses, which are common in electrical components.

  3. Packaging:
    SMA is used to improve the properties of packaging materials. Its increased chemical resistance ensures that the packaging remains intact even when exposed to harsh chemicals, oils, or moisture. Additionally, its enhanced tensile strength and impact resistance make it ideal for protective packaging.

  4. Construction Industry:
    In the construction industry, SMA-modified plastics are used in various applications like pipes, roofing materials, and insulation. The copolymer's ability to withstand weathering and high temperatures ensures that these materials maintain their strength and longevity over time.

  5. Coatings and Adhesives:
    SMA is frequently used as a modifier for coatings and adhesives due to its excellent adhesion properties. It enhances the bond strength, making it ideal for applications such as automotive paints, adhesives in packaging, and surface coatings on electronics.

  6. Consumer Goods:
    SMA is used to improve the performance of plastics in consumer goods such as kitchenware, toys, and household appliances. Its ability to improve the durability and heat resistance of plastics makes it an ideal choice for products that need to withstand everyday use and high temperatures.


Why Choose Yangchen Tech for Styrene Maleic Anhydride Copolymer?

  1. High Purity and Consistency:
    Our SMA copolymers are manufactured to the highest standards of purity, ensuring that our products deliver consistent performance in all applications.

  2. Custom Solutions:
    At Yangchen Tech, we understand that each industry has unique requirements. That’s why we offer customized SMA formulations to meet your specific performance and processing needs.

  3. Cost-Effective:
    We are committed to providing high-quality SMA at competitive prices, helping our customers optimize their production costs while maintaining exceptional product quality.

  4. Experienced R&D Team:
    Our in-house research and development team continuously innovates to improve the performance of SMA and develop new applications across various industries.

  5. Reliable Global Supply Chain:
    With our well-established global distribution network, we ensure timely delivery of SMA to customers around the world.

 

Styrene Maleic Anhydride Copolymer manufactured by Yangchen Tech offer superior heat resistance, mechanical strength, and compatibility with a range of materials. At Yangchen Tech, we are proud to manufacture high-quality SMA products that enhance the performance of plastics in automotive, electronics, packaging, and many other industries.

If you're looking for a reliable supplier of Styrene Maleic Anhydride Copolymer, look no further than Yangchen Tech. Contact us today to learn more about our SMA solutions and how we can help improve the performance of your products!

READ MORE
 Tags: